

Using Fuel Cells to Address Energy Growth and Sustainability Challenges in Data Centers

PowerHour webinar series for consulting engineers Experts you trust. Excellence you count on.

April 2, 2020 2:00pm Eastern Time / 11:00am Pacific Time (1 PDH issued by Cummins Inc.)

Welcome!

Cummins PowerHour webinar series is designed to help our engineer partners to...

- Keep up to date on products, technology, and codes and standards development
- Interact with Cummins experts and gain access to ongoing technical support
- Participate at your convenience, live or on-demand
- Earn Professional Development Hours (PDH)

Technical tips:

- Audio is available through teleconference or Zoom application.
- Attendees are in "listen only" mode throughout the event.
- Use the Zoom Q&A Panel to submit questions, comments, and feedback throughout the event. Time is allotted at the end of the PowerHour to address Q&A.
- If the audio connection is lost, disconnected or experiences intermittent connectivity issues, please ensure you are connected or troubleshoot your device by clicking the "Join Audio" button in the Zoom panel.
- Report technical issues using the Zoom Q&A Panel.

Meet your panelists

Cummins instructor:

Rich Scroggins Technical Advisor - Data Center Markets Cummins Inc.

Your local Cummins contacts:

- > AZ, ID, NM, NV: Carl Knapp (carl.knapp@cummins.com)
- > CO, MT, ND, UT, WY: Christopher Scott (<u>christopher.l.scott@cummins.com</u>)
- > CA, WA, OR, AK, HI: Brian Pumphrey (brian.pumphrey@cummins.com)
- > MA, ME, NH, RI, VT: Jim Howard (james.howard@cummins.com)
- > CT, MD, NJ, NY : Charles Attisani (<u>charles.attisani@cummins.com</u>)
- > Northern IL, MI : John Kilinskis (john.a.kilinskis@cummins.com)
- NE, SD, KS: Earnest Glaser (<u>earnest.a.glaser@cummins.com</u>)
- IL, IN, KY, MO: Jeff Yates (jeffrey.yates@cummins.com)
- > IA, MO: Kirby Holden (kirby.holden@cummins.com)

Cummins facilitator:

Michael Sanford Technical Marketing Specialist Cummins Inc.

- > DE, MD, MN, ND, OH, PA, WI, WV: Michael Munson (michael.s.munson@cummins.com)
- TX: Scott Thomas (<u>m.scott.thomas@cummins.com</u>)
- > OK, AR: Wes Ruebman (wes.ruebman@cummins.com)
- > LA, MS, AL: Trina Casbon (trina.casbon@cummins.com)
- > TN, GA: Mariano Rojas (mariano.rojas@cummins.com)
- FL: Bob Kelly (<u>robert.kelly@cummins.com</u>)
- > NC, SC, VA: Bill Morris (william.morris@cummins.com)
- Canada: Ian Lindquist (<u>ian.lindquist@cummins.com</u>)

2020 Supporting Partner of International Data Center Day

"We are confident in our approach in supporting initiatives such as International Data Center Day, to help inspire today's students to think about a career with the data center industry and Cummins"

Sarah Griffiths, Director – Data Center Markets, Cummins Inc.

Disclaimer

The views and opinions expressed in this course shall not be considered the official position of any regulatory organization and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

Participants are encouraged to refer to the entire text of all referenced documents. In addition, when it doubt, reach out to the Authority Having Jurisdiction.

Course Objectives

Using Fuel Cells to Address Energy Growth and Sustainability Challenges in Data Centers

Data centers are critical to the modern digital infrastructure and an uninterrupted supply of power is critical to their operation; in many cases the demand for reliable power sources that meet stringent performance requirements of a typical data center application drive towards solution that may have long-lasting impacts on energy growth capability and sustainability. This session will explore some of the unique challenges faced in the data center market as related to both energy growth and sustainability while introducing some of the technologies available to the market today. The instructor will review fundamentals of two common fuel cell technologies and will provide key insights into their potential impact in a data center application.

After completing this course, participants will be able to:

- Identify challenges in the data center segment related to energy growth and sustainability
- Describe a fuel cell, the basic functionality of a fuel cell and two examples of modern fuel cell technologies
- Discuss the application and potential impact of fuel cells in data center applications

Data center energy-related pressures

Increasing pressure to lower carbon footprint

- Tightening emissions regulations
- Increased publicity on sustainability initiatives

Data center energy-related pressures

Increasing pressure to lower carbon footprint

- Tightening emissions regulations
- Increased publicity on sustainability initiatives

Need lower operational costs

- Energy is 40% of operational costs¹
- Servers and Cooling Loads

Data center energy-related pressures

Increasing pressure to lower carbon footprint

- Tightening emissions regulations
- Increased publicity on sustainability initiatives

Need lower operational costs

- Energy is 40% of operational costs¹
- Servers and Cooling Loads

Data center growth is outpacing electric utility infrastructure investments

 Data centers account for 2% of global electricity consumption²

Lots of industry buzz about fuel cells

MICROSOFT-CUMMINS ADVANCED ENERGY LAB

The lab's initial focus will be on powering datacenters with natural gas powered fuel cells. The 20-rack environment in the lab simulates datacenter conditions to evaluate whether the fuel cells have the potential to improve efficiency, reduce emissions and cut costs.

EQUINIX

Equinix installs fuel cells in 12 US data centers

Apple installs 10MW fuel cell

- CenturyLink installs hydrogen fuel cells at California data center
- Uptime Institute recognizes Fuel Cells as a reliable source of onsite power

What is a Fuel Cell?

✤ A fuel cell generates electricity through a chemical reaction between hydrogen and oxygen

Fuel Cell Stack

- ♦ A typical fuel cell generates 06. 0.7V
- Cells are stacked and connected in series to generate higher voltages

Proton Exchange Membrane (PEMFC)

- Require pure hydrogen
- Zero emissions
- Fast start up
- Load following, good transient performance
- Suitable for standby power

Proton Exchange Membrane (PEMFC)

- Require pure hydrogen
- Zero emissions
- Fast start up
- Load following, good transient performance
- Suitable for standby power

Solid Oxide Fuel Cells (SOFC)

Run on any hydrogen rich gas

- Reformer extracts hydrogen from natural gas or other fuel
- High operating temperature, cogen opportunity
- Low emissions
- Slow start up and transient performance
- Suitable for prime power

Extracting Hydrogen for a SOFC

- ✤ A reformer extracts hydrogen from natural gas or other fuel
- Produces high grade usable heat
- CO₂ and H₂O are byproducts

Producing Hydrogen for a PEMFC

- Availability of Hydrogen is currently a barrier to widespread adoption of PEM fuel cells
- Hydrogen can be produced though electrolysis
- Electrolysis uses electricity to separate water into hydrogen and oxygen

Emission restrictions

PEM fuel cells have no emissions, SOFC have very minimal emissions

Emission restrictions

PEM fuel cells have no emissions, SOFC have very minimal emissions

De-carbonization

PEM fuel cells have no carbon footprint other than that generated by H_2 creation

Emission restrictions

PEM fuel cells have no emissions, SOFC have very minimal emissions

De-carbonization

PEM fuel cells have no carbon footprint other than that generated by H_2 creation

Low Noise

Highly desirable for Data Centers located in urban areas

Emission restrictions

PEM fuel cells have no emissions, SOFC have very minimal emissions

De-carbonization

PEM fuel cells have no carbon footprint other than that generated by H_2 creation

Low Noise

Highly desirable for Data Centers located in urban areas

Hydrogen Availability

Where hydrogen is available or hydrolysis using renewable energy is practical

Emission restrictions

PEM fuel cells have no emissions, SOFC have very minimal emissions

Hydrogen Availability

Where hydrogen is available or hydrolysis using renewable energy is practical

De-carbonization

PEM fuel cells have no carbon footprint other than that generated by H_2 creation

Reliable Gas Utility

In some locations the gas utility is more reliable than the electric utility

Low Noise

Highly desirable for Data Centers located in urban areas

Emission restrictions

PEM fuel cells have no emissions, SOFC have very minimal emissions

Hydrogen Availability

Where hydrogen is available or hydrolysis using renewable energy is practical

De-carbonization

PEM fuel cells have no carbon footprint other than that generated by H_2 creation

Reliable Gas Utility

In some locations the gas utility is more reliable than the electric utility

Low Noise

Highly desirable for Data Centers located in urban areas

Infrastructure Cost Reduction

Low noise and emissions allow fuel cell location close to loads enabling electrical infrastructure cost reduction

Minimal emissions and noise allow fuel cells to be located close to loads

- Infrastructure cost reduction
- Simplifies the operation and construction
- Reliability improves due to simplicity
- Data Center efficiency (PUE) improves

Fuel cell at the rack

Fuel cell at the rack level can power server loads directly:

- Eliminates substantial switchgear costs
- Battery at rack mitigates transients in server loads
- Transient at servers are more severe for high compute lower storage loads as will be common in Edge applications

Fuel cell at the row

Paralleled fuel cell modules allow for redundancy and maintainability of fuel cells

- Energy storage systems will help mitigate transients and clear faults
- Common requirement of low-inertia, inverter based power sources

300 kW

Mechanical Loads

UPS will stabilize voltage in the event of mechanical load transients

Distributed Redundant Design

UPS walk in function can **minimize** transients on a failover condition in a distributed redundant design

DC Power in Data Centers

Will data center power distribution systems migrate towards DC?

- Servers require DC power
- Most renewable sources are inverter based
- Cost and efficiency improvements associated with removing AC/DC conversions

DC Data center system

DC Power in Data Centers

Will data center power distribution systems migrate towards DC?

- Servers require DC power
- Most renewable sources are inverter based
- Cost and efficiency improvements associated with removing AC/DC conversions

Limitations to mass-adoption of DC distribution

- Voltage conversions still needed between DC levels
- Few suppliers of DC distribution equipment
- DC circuit breakers are more expensive than AC circuit breakers
- DC is perceived as more dangerous than AC
- AC power will still be required for cooling and mechanical loads

DC Data center system

AC Data center system

Keys to Fuel Cell Adoption at Scale

Regulations and Incentives

- Will drive investments in fuel cell technology
- Emissions regulations may limit conventional generation
- Carbon reduction goals drive development of low carbon technologies

Keys to Fuel Cell Adoption at Scale

Regulations and Incentives

- Will drive investments in fuel cell technology
- Emissions regulations may limit conventional generation
- Carbon reduction goals drive development of low carbon technologies

Technology Improvements

- Necessary to make fuel cells feasible at scale
- Fuel cells costs (\$/kW) need be competitive with other forms of generation or subsidized
- Improved transient capability of energy storage

Keys to Fuel Cell Adoption at Scale

Regulations and Incentives

- Will drive investments in fuel cell technology
- Emissions regulations may limit conventional generation
- Carbon reduction goals drive development of low carbon technologies

Technology Improvements

- Necessary to make fuel cells feasible at scale
- Fuel cells costs (\$/kW) need be competitive with other forms of generation or subsidized
- Improved transient capability of energy storage

Ecosystem

- Mature supply chain for infrastructure and hydrogen
- Development of a skilled workforce
- Development of hydrogen infrastructure

Smaller, distributed fuel cell systems can disrupt the data center power model

Cummins is innovating to deliver the Power of Choice

SERVICE & SUPPORT

SYSTEM OFFERINGS

CHARGING, CONNECTIVITY, HYDROGEN GENERATION & SUPPLY

Course Summary

Using Fuel Cells to Address Energy Growth and Sustainability Challenges in Data Centers

- Identify challenges in the data center segment related to energy growth and sustainability
- Describe a fuel cell, the basic functionality of a fuel cell and two examples of modern fuel cell technologies
- Discuss the application and potential impact of fuel cells in data center applications

Key Takeaways

Fuel cells could potentially help data centers reliably meet carbon reduction goals

Two types of fuel cells are available in the market

- Solid Oxide Fuel Cells
 - Run on natural gas
 - · Suitable for prime power
- PEM fuel cells
 - Run on pure hydrogen
 - Suitable for standby power

Cummins is investing in both SOFC and PEMFC technologies

Additional Resources

Cummins White Papers

- Data Center Continuous (DCC) Ratings: A Comparison of DCC Ratings, ISO Definitions and Uptime Requirements (Nov 2019)
- Understanding ISO 8528-1 Generator Set Ratings (Nov 2019)

Cummins On-Demand Webinars

- Generator Set Ratings for Data Centers and Other Applications
- Common Failure Modes of Data Center Back Up Power Systems

Data Center Continuous (DCC) Ratings: A Comparison of DCC Ratings, ISO Definitions and Uptime Requirements

White Paper Dave Matuseski, Technical Counsel Critical Protection Team, Cummins

While Uptime Institute references the ISO8528-1 definitions for generator

ratings in their publication Tier Standard: Topology, they do not require the use of these definitions for generators to meet the Tier III and Tier IV requirements, as described in the same publication. A more cost-effective and reliable generator rating that meets the Tier III and Tier IV requirements can be achieved when the generator manufacturer develops ratings specifically for data center applications.

Diesel Generators in a Tier III or Tier IV System

In Tier III and Tier IV systems, Uptime Institute defines the diesel generators as the primary source of power and the utility as an economic alternative. This definition puts two important requirements on the diesel generators. First, they must be large enough to carry the entire data center load. Second, there can be no limit on the number of hours the diesel generators can run.

Q&A

Please type your questions, comments and feedback in the **Zoom Q&A** window.

After the PowerHour, a complete list of questions and answers will be published on powersuite.cummins.com.

Rich Scroggins Technical Advisor - Data Center Markets Cummins Inc.

Your local Cummins contacts:

- > AZ, ID, NM, NV: Carl Knapp (carl.knapp@cummins.com)
- CO, MT, ND, UT, WY: Christopher Scott (<u>christopher.l.scott@cummins.com</u>)
- > CA, WA, OR, AK, HI: Brian Pumphrey (<u>brian.pumphrey@cummins.com</u>)
- > MA, ME, NH, RI, VT: Jim Howard (james.howard@cummins.com)
- > CT, MD, NJ, NY : Charles Attisani (charles.attisani@cummins.com)
- Northern IL, MI : John Kilinskis (john.a.kilinskis@cummins.com)
- NE, SD, KS: Earnest Glaser (<u>earnest.a.glaser@cummins.com</u>)
- IL, IN, KY, MO: Jeff Yates (jeffrey.yates@cummins.com)
- > IA, MO: Kirby Holden (kirby.holden@cummins.com)

Michael Sanford Technical Marketing Specialist Cummins Inc.

- > DE, MD, MN, ND, OH, PA, WI, WV: Michael Munson (michael.s.munson@cummins.com)
- TX: Scott Thomas (<u>m.scott.thomas@cummins.com</u>)
- > OK, AR: Wes Ruebman (wes.ruebman@cummins.com)
- LA, MS, AL: Trina Casbon (trina.casbon@cummins.com)
- > TN, GA: Mariano Rojas (mariano.rojas@cummins.com)
- FL: Bob Kelly (<u>robert.kelly@cummins.com</u>)
- > NC, SC, VA: Bill Morris (william.morris@cummins.com)
- Canada: Ian Lindquist (<u>ian.lindquist@cummins.com</u>)

Q&A

Please type your questions, comments and feedback in the **Zoom Q&A** window.

After the PowerHour, a complete list of questions and answers will be published on powersuite.cummins.com.

Please complete the brief survey before exiting the webinar!

Rich Scroggins Technical Advisor - Data Center Markets Cummins Inc.

Your local Cummins contacts:

- > AZ, ID, NM, NV: Carl Knapp (carl.knapp@cummins.com)
- > CO, MT, ND, UT, WY: Christopher Scott (<u>christopher.l.scott@cummins.com</u>)
- > CA, WA, OR, AK, HI: Brian Pumphrey (<u>brian.pumphrey@cummins.com</u>)
- > MA, ME, NH, RI, VT: Jim Howard (james.howard@cummins.com)
- > CT, MD, NJ, NY : Charles Attisani (charles.attisani@cummins.com)
- > Northern IL, MI : John Kilinskis (john.a.kilinskis@cummins.com)
- NE, SD, KS: Earnest Glaser (<u>earnest.a.glaser@cummins.com</u>)
- IL, IN, KY, MO: Jeff Yates (jeffrey.yates@cummins.com)
- IA, MO: Kirby Holden (<u>kirby.holden@cummins.com</u>)

Michael Sanford Technical Marketing Specialist Cummins Inc.

- > DE, MD, MN, ND, OH, PA, WI, WV: Michael Munson (michael.s.munson@cummins.com)
- TX: Scott Thomas (<u>m.scott.thomas@cummins.com</u>)
- > OK, AR: Wes Ruebman (wes.ruebman@cummins.com)
- LA, MS, AL: Trina Casbon (trina.casbon@cummins.com)
- > TN, GA: Mariano Rojas (mariano.rojas@cummins.com)
- FL: Bob Kelly (<u>robert.kelly@cummins.com</u>)
- NC, SC, VA: Bill Morris (<u>william.morris@cummins.com</u>)
- Canada: Ian Lindquist (<u>ian.lindquist@cummins.com</u>)

Closing

Watch out for a follow-up email including:

- A link to the webinar recording and copy of the presentation
- A certificate issuing one professional development hour (1 PDH)

Visit powersuite.cummins.com for:

- Sizing and specification development tools
- PowerHour webinar recordings, presentations and FAQ
- Additional Cummins continuing education programs

Visit <u>cummins.com/energy-iq</u> and sign-up for communications to:

- Receive energy insights
- Read about energy technologies and trends

Upcoming PowerHour Webinars:

- Gaseous Generator Set Installations and Case Studies, April 28
- Considerations for Specifying Generator Set Fuel Sources, May 20
- The Role of a System Level Control in a Power System, May 21

Please contact Michael Sanford if you have any questions related to the PowerHour webinar (<u>michael.sanford@cummins.com</u>)

